If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+x-333=0
a = 4; b = 1; c = -333;
Δ = b2-4ac
Δ = 12-4·4·(-333)
Δ = 5329
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{5329}=73$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-73}{2*4}=\frac{-74}{8} =-9+1/4 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+73}{2*4}=\frac{72}{8} =9 $
| 3x-25=-1 | | 9x*99999999999999999999999999999=99999999999999999999999999999999999999999999999999999 | | y÷179=34 | | 4.9t^2+3t+850=0 | | y÷17/9=3/4 | | x+36-64x^2=0 | | 7x-3x+20=-8 | | 8x=60+3x | | 77/(x+9)=7 | | -3y-10+4y=0 | | m3-2m=0 | | v/3.2=2 | | (x+7)*3=39 | | 2y–14=–12 | | 2y–14=6–12 | | 7(p-3)=2(p+6) | | .08x=60 | | 4x-15=5x-21 | | y/5-7=7 | | 4.9t^2-12t=80 | | 8v/24=-21/24 | | 3/x-4=5/2x-3 | | 8x-50/2=7 | | 12(-6x+9)=-324 | | 8x+3=3x+10 | | 2x-2=-2x+4 | | (3x+40)=(6x-50) | | -15-7a=34 | | 3h=7(7/2−7/3h)−10 | | 3-(2x+6)=-13 | | -6+x/9=3 | | 3-4(2x+3)=3x/2 |